PHYS3710 Short experimental projects I Department of Physics The Chinese University of Hong Kong, Hong Kong

Topic: Verification of Special Relativity and β spectroscopy

designed by

H.K. Wong, March 17, 2004

Topics you should know first:

- 1. Special relativity
- 2. β decay

Objectives:

- 1. Verify energy-momentum equation in special relativity.
- 2. Learn β spectroscopy.

Check-list for the project:

- 1. Review special relativity and basic nuclear physics. (Ref. 1)
- 2. Read manual (Ref. 2) and learn how to handle radioactive materials. (Ref. 3)
- *3.* Set up equipment.

Please be careful:

- a. To pump down, use mechanical pump first to get P < 100mTorr.
- b. To break vacuum, turn off detector voltage and then close sorption pump valve.
- 4. Part I: Momentum calibration

Calibrate Hall sensor. Plot $B = a (V - V_0)$ for 1 mA sensor current.

- 5. Part II: (Kinetic) energy calibration
 - a. Plot energy spectrum of ¹³⁷Cs: intensity (counts/sec) vs. channel number.

(Note: counting time $\sim 2000 \text{ sec.}$)

b. Check linearity and offset using a pulser:

(Note: Detach preamp from detector first.)

Plot pulse height vs peak channel number: $H = b_H(k - k_o)$.

Energy calibration curve: $T = b(k - k_o)$.

- 6. Part III. Energy spectra: N(T_e) vs T_e
 - a. Plot energy spectrum of ¹³³Ba.
 - b. Plot energy spectrum of ²⁰⁴Tl.

(Note: Convert channel number to T_e .)

- 7. Part IV. Momentum spectrum of ²⁰⁴Tl:
 - a. Plot $N(p_e)$ vs p_e using $N(T_e)$ d $T_e = N(p_e)$ d p_e where d T_e is related to d p_e .

8. Part V. Verification of special relativity

a. Energy spectrum for various B (200 to 750 Gauss).

(Note: counting time ~ 2000 sec.)

b. Plot peak energy T vs. p.

c. Plot
$$\frac{p^2c^2}{2T}$$
 vs $\frac{T}{2}$.

References:

- 1. K.S. Krane, "Introductory nuclear physics" (QC777.K73 1988)
- 2. Lab manual*
- 3. Radiation safety notes*
- 4. J.G. Couch and T.K. Dorries, "Measuring relativistic electrons in the undergraduate laboratory", Am. J. Phys. <u>50</u>, pp.917-921 (1982).
- 5. J. W. Luetzelschwab, "Apparatus to measure relativistic mass increase", Am. J. Phys. <u>71</u>, pp. 878-884 (2003).
- 6. G.J. Aubrecht II, "Comment on "Apparatus to measure relativistic mass increase," Am. J. Phys. <u>72</u>, pp.970-971 (2004).

^{*} available on CoursePage.